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A new, accurate, and efficient algorithm is developed for the numerical evaluation of a class 
of singular integrals which arise in the BEM (boundary element method) analyses. The 
algorithm is based on an idea of scaling integration that utilizes a proportional relationship 
inherent in the numerical computation of the singular integrals over flat triangular elements. 
The present algorithm (scaling integration method) avoids the direct numerical evaluation of 
the integrand in the neighborhood of singularities. It is shown and demonstrated that the 
method is simpler, faster, and more accurate than standard Gaussian integration algorithms. 
An application of the method to the BEM analysis is also described and the results are 
favorably compared with the exact solution. 0 1989 Academic press, IIIC. 

1. INTRODUCTION 

The boundary element method (BEM) for linear elastic problems is well known 
and well documented elsewhere, see, for example, Brebbia [ 11, Banerjee and 
Butterfield [2], and Tanaka [3]. The main advantage of BEM is the numerical 
efficiency; since it avoids discretizing the internal field or body, only the boundary 
of the body requires discretization. The method employs a fundamental solution or 
a Green’s function of the relevant differential equation to reformulate the problem 
as a boundary value problem in terms of an integral equation. In the BEM 
formulation, the singularities of the fundamental solution are generally located 
on the boundary of the problem. This presents some numerical difficulties, and 
special care is usually exercised to evaluate singular integrals in the vicinity of the 
singularities. 

Various methods have been proposed to cope with the difficulties in numerical 
integration of a singular integrand. On this subject, the readers are referred to 
Lachat and Watson [4], Critescu and Loubignoc [S], and Hayami and Brebbia 
[6]. Lean and Wexler [7] proposed a method to adjust weights of the Gaussian 
quadrature scheme, which takes into account of the effects of singularities. Aliabadi 
and Hall [B] utilized the Taylor expansion of integrand so that the singular terms 
can be integrated in closed form. Telles [9] developed an algorithm which yields 
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locations of the best sampling points with minimum integration error when 
singularity is either on or inside of the boundary surface. 

Another approach is to ensure that the singularities and the boundary nodes are 
not located on the same boundary. Oliveira [lo] suggested moving the singularities 
of the free-space Green’s function onto the auxiliary boundary. Han and Olson 
[ 111 proposed the adaptive BEM where the singularities are positioned on an 
auxiliary boundary which is allowed to move. Although the method is able to 
reduce the number of singularities, it involves a nonlinear method and requires 
extra iteration in computing the singularity locations. 

An alternative may be to devise an algorithm which avoids the direct evaluation 
of singular integrals. The Green’s function in BEM analyses usually has the 
r-inverse singularity, where r represents the distance between the boundary nodes. 
In this paper, a new, fast, and accurate algorithm for this class of singular integra- 
tion problems is presented and the effectiveness of the algorithm is confirmed by 
applying it to the simple example in BEM analysis. The present algorithm (scaling 
integration method) provides a means to avoid numerical evaluation of the 
integrand in the neighborhood of singularities. The method utilizes the inherent 
(analytical) scaling relationship of the integration value with respect to the flat 
triangular area of integration. The derivation of the scaling integration method is 
described in Section 2. The efficiency and accuracy of the method are demonstrated 
in Section 3 by applying it to a simple BEM problem whose analytical solution is 
known. In Sections 4 and 5, a general extension of the present method and 
conclusions are given, respectively. 

2. SCALING INTEGRATION METHOD 

2.1. Problem Formulation 

Let us consider the numerical evaluation of the integral of a certain function f 
over the finite triangular surface area S. We assume that f is the function with 
3-dimensional spherical coordinates (r, 8, rp), and that f can be decomposed into 
the r-inverse part l/rs (/I < 2) and angular part g(8, cp). It is further assumed that 
one of the vertexes of AABC= S is located at the origin of the coordinate. The 
geometry of the problem is shown in Fig. 1. Then this integration, naturally a 
singular integration problem for 0 -C /I -C 2, can be written as follows: 

(1) 

The assumptions,on f and S may impose rather strong restrictions, but Green’s 
functions associated with many important physical problems can be decomposed 
into the present form using the spherical coordinate. In particular, it is noted that 
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FIG. 1. Geometry of the singular integration problem. 

the computation of the diagonal elements of the coefficient matrices in BEM 
analyses can be formulated in the present singular integral form (1) [ 1,2]. 

Usually, this class of numerical integration problems is solved utilizing the 
Newtonian or Gaussian type of numerical algorithms [12]. In the conventional 
BEM algorithms, the boundary element mesh should be such that many sampling 
points are concentrated in the neighborhood of the singularities to guarantee the 
numerical accuracy; this implies that the computational cost is often prohibitively 
expensive. Numerical results, however, are generally poor due to the computational 
difficulties in evaluating f around the singular point A (where r = 0). In particular, 
the accuracy of computed derivatives on the boundary is often insulliciently poor. 

To circumvent this difficulty, we propose to utilize a scaling or proportional 
relationship of the integral value with respect to the integration area S, which 
typically represents the triangular boundary element. The idea of the scaling 
integration method is illustrated in the subsequent development. 

2.2. Scaling Relationship 

If we slightly modify the domain of integration S to S’, which is scaled (down) 
by the factor c( ( < l), then we obtain the scaling relationship 

s, f dS: j-s f dS’= 1: uc2-B’, (2) 

where we have used the facts that the ratio of the triangular areas, S and s’, is 
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proportional to a2 and that f is linear to a -P. Then, utilizing Eq. (2) the numerical 
integration of Eq. (1) can be performed without sampling the grid points adjacent 
to the singular point A as 

I fds,*,Sfwfds 
1 _ a(2-m 

= i-;,f dt 

c-m 

where we have divided the area S- S’ into the trapezoidal elements tj (i= 1, 
2 , . . . . N), and fi denotes the value off evaluated at ti; 1 is the length of BC, and h 
is the height of AABC (see Fig. 1). The domain of integration, S- S’=Cy=“=, ti, 
obviously contains no singular point. Thus, the formulation (3) is very effective in 
the sense that it completely avoids the numerical evaluation of f around the 
singular point A. 

When a is close to 1, the scaling integration method becomes simpler and more 
accurate. In the limit a --, 1, the transformation (3) can be further approximated as 

r=;f4tt2 
i=l i 2N(2-/?) 

=i+ ,:s,,. (4) 

The formulation (4) implies that the numerical integration can be performed by just 
multiplying a factor 2S/(2 - 8) to the mean value off averaged over the boundary 
line elements along the edge BC of AABC. 

It is clear that the numerical error of the present scaling integration method is a 
monotone decreasing function of the scaling factor a for the range of values, 
0 < a < 1. Hence, in the subsequent development, we will set a = 1. We may note 
that such a limit usually exists for the class of singular integration problems treated 
in this paper. 

2.3. Analytical Consideration 

The derivation of the scaling integration method can be demonstrated 
analytically by transforming the original surface integral to the line integral as 
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where dS = r’ dr’ de, y = h tan(O), arg(AB) = 8,) and arg(AC) = 8,. Considering 
h J’,; dy = 2S, this leads to the identical result to the previous formulation (4) if the 
integration over the edge BC is performed numerically along the boundary line 
elements. 

The characteristics of the present scaling integration method may be summarized 
as follows: 

1. It avoids numerical evaluation of the integrand in the neighborhood of the 
singular point, 

2. it only needs to perform the numerical integration over boundary line 
elements, 

3. it is not needed to apply any elaborate coordinate transformation using 
trigonometric functions, polynomial functions, etc., and, 

4. it is, hence, able to provide a more accurate result with a smaller number 
of sampling points (i.e., less computation time) than the conventional methods. 

It is noted that the present method can be applied only to the flat triangular 
elements. However, the algorithm may also be effectively applied to most of the 
smooth curved surfaces by locally subdividing and flattening the boundary surface. 

3. NUMERICAL APPLICATIONS 

3.1. Simple Test Examples 

We compare the present scaling integration method with the conventional 
midpoint rule, Gauss rule, and exact solutions for the integration of the following 
two functions: 
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FIG. 2. Numerical accuracy for f, = l/r. 

and 

cos 6 
f2 =y (7) 

The domain of integration is the triangular area with the vertexes (0, 0, 0), (0, 1, 0), 
and (1, l,O). In the numerical experiments, we vary the number of sampling points 
using the IBM Fortran software package with double precision arithmetic. It is 
reminded that we set u = 1 for the present method. 

Figures 2 and 3 show the results for two different functions, fi and f2, respec- 
tively, where the numerical error is plotted as a function of the number of sampling 
points. Naturally, the numerical error is a decreasing function of the number of 
sampling points for each method. The numerical error of the present method is less 
than 2% for just sampling four points, while that of the conventional methods is 
greater than 4% using many more points than the scaling integration method. 
Since the computation time is proportional to (a certain power of) the number of 
sampling points, the numerical advantage of the present method is obvious. 

3.2. Application to the Boundary Element Method 

The following Navier equation in 3-dimensional space is considered to be solved 
employing the BEM technique, 

LiiUj = 0, (8) 
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FIG. 3. Numerical accuracy for f2 = cos 0/r. 

where uj is the displacement vector which is a function of the space coordinates x, 
(i= 1,2, 3) and where index notation, with a summation denoted by repeated 
indices, is used. The partial differential operator L, is delined by 

a a -- L,=~60A+(1~2v)axiaxj’ 

where 6, is the Kronecker’s delta, A is the Laplacian operator, p and v are suitable 
constants. 

Kelvin’s solutions to Eq. (8) u$ and p$, take the form 

1 
U’:=16x~(1-v) ; 0 

’ [(3-4V)do+r,ir,j] 

3 
-r,ir,j 
(1-2v) 

+r,jni-rr,inj , 1 (11) 
where r and r,i denote the distance between the boundary and internal field points 
and its gradients (i = 1, 2, 3), respectively, and n is the unit normal vector. It is clear 
that u$ and p$ are proportional to l/cr and 1/cr2, respectively, if r is scaled by a 
(r is transformed to ar). 

At first inspection of Eq. (1 l), the direct application of the present method to p$ 
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seems to be not feasible. In the BEM formulation, however, the integrand becomes 
a product of a suitable shape (interpolation) function and pz, which enables the 
execution of the numerical integration, perfectly tractable. Therefore, by choosing 
the appropriate shape functions, the scaling integration method can be effectively 
applied to the BEM analysis. 

The boundary integral equations for the boundary and field points, respectively, 
are written as 

CijUj + 
s 

p;u,dS= u$pjdS 
s f s 

(12) 

ui+ pzujdS= u$pjdS, 
s f (13) 
s S 

where cii = $5, for smooth surface and pj denotes the traction vector. Usually, the 
surface integral which appears in Eqs. (12) and (13) is performed dividing the 
subject surface boundary into sufficiently well-discretized boundary elements. Note 
that the BEM formulation, in general, requires equal numbers of boundary nodes 
and singularities. 

We consider here the cubic domain in which the numerical solution is obtained 
for Eqs. (12) and (13). The boundary conditions and the boundary (linear 
triangular) element mesh system are depicted in Fig. 4. If an element includes the 
origin, the scaling integration method is used as formulated in Section 2. Otherwise, 
a Sth-order (7 points) Gaussian quadrature scheme is used. The results of the 

ux= u,=O for all boundaries 

FIG. 4. Problem geometry for the BEM analysis. 
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FIG. 5. Comparison of numerical and analytical solutions. 

present BEM analysis and the analytical solution are compared for U, in Fig. 5. The 
results indicate an excellent agreement of the numerical solution to the analytical 
solution. It is important to note that the value of U, near the corner of the cubic 
domain is obtained with good accuracy; this can be a major numerical advantage 
of the present method. 

Case 1 A 

A 

.. 

B ,.,.. ./ 0 
‘. .. . . . . . c 

Case 2 A 

Case 3 o 
0 S =AABC 

S,=AOBC 
,;. : . . S2=~0~c 

S,=AOAB 

FIG. 6. General cases for relative location of the origin. 
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4. GENERAL EXTENSION 

In Section 2, it is assumed that the origin of the coordinate should be identical 
to one of the three vertexes of dABC = S. This restriction can be relaxed for general 
cases and such an extension is described for the purpose of practical numerical 
applications. 

When the origin is not on S but lies on the same plane which contains S, then 
the numerical integration of Eq. (1) can be performed by suitably dividing the tri- 
angular area S. Three different cases are depicted in Fig. 6, according to the relative 
location of the origin to S= AABC. Let us denote S, = AOBC, Sz = AOAC, and 
S3 = AOAB. The integral values which correspond to the areas S, S,, Sz, and S3 
are denoted by Z, I,, Z,, and I,, respectively. Note that we can effectively apply the 
present scaling integration method to compute I,, Z2, and Z3, since the origin is 
shared as the vertex of each of the triangular area, S, , &, and S3. 

Then, using the relative geometric relations among S, S,, Sz, and & (see Fig. 6), 
Z is obtained as follows: 

l Case 1. 

z=z, +z, +z,. (14) 

l Case 2. 

z=z, +z3 -I,. (15) 

l Case 3. 

z=z, -zz -z,. (16) 

Thus, the numerical integration should be executed over the boundary line elements 
only along the edges AB, BC, and CA of AABC. 

If the origin is not on the plane which includes S, then we may note that the 
numerical integration can be easily performed using the conventional methods 
[12], i.e., Newton or Gauss methods, except the case when the origin is located 
very close to S. 

5. CONCLUSIONS 

A new, accurate, and simple algorithm for the numerical evaluation of singular 
integrals is obtained using an inherent (analytical) scaling relationship between the 
integral value and triangular area of integration. The algorithm avoids the direct 
numerical evaluation of integrand in the neighborhood of singularities. Numerical 
advantages of the present scaling integration method are illustrated using the 
numerical examples whose analytical solutions are known. It is also demonstrated 
that the present method is useful and accurate in the BEM analyses. Although the 



302 KATAYAMAANDKODA 

method is most efficiently applied to the flat triangular elements, it is proved that 
the algorithm can improve both the computational time and numerical accuracy. 
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